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The idea



Ritz Method (1909):

✓ use shape functions that satisfy exactly the boundary conditions (Dirichlet and 

interior)   

✓ combine them to more or less satisfy the domain equations

✓ basis of the conforming finite element

Comparison: approximation strategies of Ritz vs Trefftz

Trefftz Method (1926):

✓ use shape functions that satisfy exactly the domain equations

✓ combine them to more or less satisfy the boundary conditions

✓ basis of the boundary/meshless/Trefftz methods



• simple & general, can be used for 

any physical problem

• bear no physical meaning

• determined by the nodes of the 

mesh

Comparison: the approximation functions, the mesh and the user’s perspective
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• problem-dependent

• only suitable for the problem they 

are computing

• bear physical meaning

• independent of the nodes

Shape functions
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R
it
z
 F

E
M

T
re

ff
tz

 F
E

M

Mesh

• problem-dependent

• only suitable to the problem they 

are computing

• bear physical meaning

• independent of the nodes

Shape functions

• could be missing altogether…

• coarse meshes

• insensitive to distortion

• insensitive to high frequencies

• needs to be conforming

• refined meshes

• sensitive to distortion

• sensitive to high frequencies
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Mesh

• problem-dependent

• only adequate to the problem they 

are computing

• bear physical meaning

• independent of the nodes

Shape functions User’s perspective

• displacement and stress solutions 

are balanced

• commercially unavailable

• harder to use

• could be missing altogether…

• coarse meshes

• insensitive to distortion

• insensitive to high frequencies

• needs to be conforming

• refined meshes

• sensitive to distortion

• sensitive to high frequencies

• displacement solutions are typically 

better than stress solutions

• commercially available

• easy to use



The formulation



Governing equations in the time domain

(x, y, t)

(x, y, t)

Domain Navier

Boundaries
Dirichlet

Neumann

Initial

Conditions

𝐮(𝐱, 𝐲, 𝟎) = 𝐮𝟎(𝐱, 𝐲)

ሶ𝐮(𝐱, 𝐲, 𝟎) = 𝐯𝟎(𝐱, 𝐲)

ሷ𝐮(𝐱, 𝐲, 𝟎) = 𝐚𝟎(𝐱, 𝐲)

Find the displacement field            and the stress  field              that satisfy the PDE.

Description of the problem
Transient wave propagation problem

𝐧 ⋅ 𝛔 x, 𝑦, 𝑡 = 𝐭Γ (x, 𝑦, 𝑡)

𝐮 x, y, t = 𝐮Γ (x, y, t)

( )u x ( )σ x

𝐃 𝐤 𝐃 ∗ 𝐮 x, y, t = 𝛒 ሷ𝐮 x, y, t



(x, y, t)

(x, y, t)

Description of the problem
Transient wave propagation problem

Outcome: a series of spectral problems in space

Discretization in time

Discretization in space

Solution of the problem discretized in time

𝐃 𝐤 𝐃 ∗ 𝐮 x, y, t = 𝛒 ሷ𝐮 x, y, t

Governing equation in the time domain 

Navier



Non-homogeneous equations

Solution overview
Discretization in time with the Newmark Method 

Known

values

u0

v0

a0

• Time stepping method

• Based on Taylor series

The Newmark Method (second-order transient problems)

Unknown

values

u∆𝐭

v∆t

a∆t

𝜔2 =
1

𝛽 ∙ ∆𝑡2

Series of pseudo spectral problems



General solution –approximation of the displacements

(x, y)

(x, y)

𝐃 𝐤 𝐃 ∗ 𝐮 + 𝜔2 𝛒 𝐮 = 𝜔2 𝛒 ഥ𝐮0

Solution overview
Discretization in space – displacement field approximation

Trefftz basis

𝐮 = 𝚿𝐜 𝐗𝐜 + 𝚿𝐩 𝐗𝐩

𝐃 𝐤 𝐃 ∗ 𝚿𝐜+𝜔
2 𝛒 𝚿𝐜 = 0 𝐃 𝐤 𝐃 ∗ 𝚿𝑝+𝜔

2 𝛒 𝚿𝑝 = 𝜔2 𝛒 ഥ𝐮0

Complementary

solution basis

Particular 

solution basis

Must satisfy the non-homogeneous equationMust satisfy the homogeneous equation

Navier equation for the spectral problem at the end of the time step

? ?

𝜔2 =
1

𝛽 ∙ ∆𝑡2

Dual Reciprocity Method



Approximation bases

Radial basis functions:

Solution overview
Approximation of the particular solution - Conventional Dual Reciprocity Method



Approximation bases

Radial basis functions:

Solution overview
Approximation of the particular solution - Conventional Dual Reciprocity Method

Any other way?



𝐃 𝐤 𝐃 ∗ 𝚿𝐩 𝐗𝐩 +𝜔2 𝛒 𝚿𝐩 𝐗𝐩 = 𝜔2 𝛒 ഥ𝐮0

ഥ𝐮0 = 𝚿𝟎 𝐗𝐩

• Define 𝚿𝐩 to obtain 𝚿𝟎

Assuming that 𝚿𝐩 satisfy a Trefftz condition:

New Dual Reciprocity Method

Solution overview
Approximation of the particular solution

New Dual Reciprocity Method

Source term and particular solution bases are equivalent!

Approximation of the source term

𝐃 𝐤 𝐃 ∗ 𝚿𝐩 +𝜔2 𝛒 𝚿𝐩

= 𝜔2 𝛒 𝚿𝟎

? ??

𝐃 𝐤 𝐃 ∗ 𝚿𝐩 + λ2 𝛒 𝚿𝐩 =

0

𝚿𝟎 =
𝜔2 − λ2

𝜔2 𝚿𝐩

Non-homogeneous equation

⇔ 𝐃 𝐤 𝐃 ∗ 𝚿𝐩

= − λ2 𝛒 𝚿𝐩

(λ ≠ 𝜔)



1 Choice of one or more λ pseudo-frequencies

2
Construction of the particular solution basis 𝚿𝐩

(Trefftz with λ) 

3 Obtaining the source term basis 𝚿𝟎

4 Collocation of ഥ𝐮𝟎 in Gauss points

5 Solving the system to obtain the 𝐗𝐩 weights

6 Obtaining the particular solution 𝐮𝐩

𝚿𝐩 = (                  )

Solution overview
Implementation of the New Dual Reciprocity Method

𝚿𝟎 =
𝜔2 − λ2

𝜔2 𝚿𝐩

Trefftz with λ

Gauss collocation points

where ഥ𝐮𝟎 is known

ഥ𝐮𝟎 = u0 + ∆t · v0 + (1/2 – β ) · ∆t ²· a0

𝐗𝐩 = ഥ𝐮0 ∙ 𝚿0
−1

𝐮𝐩 =𝚿𝐩 𝐗𝐩

λ = {1, 2, 3}  



New Dual Reciprocity Method approach

Advantages 

• Simple expressions for the particular solution approximation

• Regular approximation functions, no points of singularity

• Flexible definition – choices of       are free

• Simple implementation because the shape functions for the 

complementary and for the particular solution are similar

• All coefficients are defined by boundary integrals

Drawback • The collocation system may be ill-conditioned

Moldovan ID, Radu L - Trefftz-based Dual Reciprocity Method for hyperbolic boundary value problems, 

International Journal for Numerical Methods in Engineering, 106(13), 1043-1070, 2016



Solution overview
New Dual Reciprocity Method



The implementation



FreeHyTE: a hybrid-Trefftz finite element platform
What is FreeHyTE?

What is FreeHyTE?

• Free, open-source, computational platform

• Public & user-friendly codes using HyTE

• Implemented in Matlab



FreeHyTE: a hybrid-Trefftz finite element platform
What is FreeHyTE for? 

What is FreeHyTE for? 

• Solving elliptic, parabolic and hyperbolic problems 



FreeHyTE: a hybrid-Trefftz finite element platform
Which modules are available at the moment? 

Which modules are available at the moment? 

• Plane elasticity 

• Porous media dynamics

• Transient problems

• Transient acoustics

• General Poisson, Laplace, and Helmholtz problems

Solid transient Direct Boundary Methods

Triphasic transient Biphasic transient

Elastostatic plane stress and strain structural problemsTransient heat



FreeHyTE: a hybrid-Trefftz finite element platform
Why using FreeHyTE?

Why using FreeHyTE?

• Because HyTE just work well!

• Researchers don’t have to start from scratch

• Public & user-friendly codes using HyTE are rare (at best)

• Modular structure

• New modules are constantly added

• New versions of the existing modules are constantly released

• Easy to use



Application



Solve the hyperbolic problem for the initial conditions:

𝑢0(𝑥, 𝑦) = 0
𝑣0(𝑥, 𝑦) = 0
𝑎0(𝑥, 𝑦) = 0

FreeHyTE: a hybrid-Trefftz finite element platform
Example

1
.5

 m

𝑝(𝑥,𝑦,𝑡)

Problem

1.5 m

𝑝 𝑥, 𝑦, 𝑡 = 𝑝(𝑥, 𝑦) ∙ 𝑝𝑡(𝑡)

𝑝

1.0 kPa



Newmark method

• Total time: 1.4 s

• Time step: 0.015625 s

FreeHyTE: a hybrid-Trefftz finite element platform
Example

Discretization in time

𝑝𝑡(𝑡)

𝑡 𝑠0.063 1.4

1.0



• Complementary solution: 

• 144 hybrid-Trefftz finite elements

• Domain order: 17

• Edges order: 8

• Particular solution: 

• Order: 17

• Built on three pseudo-frequencies, 

𝜆1= 0.1    ;     𝜆2= 0.2      ;     𝜆3= 0.3 

{1, 2,3} =

FreeHyTE: a hybrid-Trefftz finite element platform
Example

Discretization in space

12

12



FreeHyTE: a hybrid-Trefftz finite element platform
Example

Results

Sy

• Boundary conditions are well observed

• No visible field discontinuities



FreeHyTE: a hybrid-Trefftz finite element platform
Example

Results

Sy

• Boundary conditions are well observed

• No visible field discontinuities



FreeHyTE: a hybrid-Trefftz finite element platform
Example

Time history graphs

Results



Intelligent health monitoring of road infrastructures 

using bender elements embedded in pavements 

(INTENT)

Objectives:

✓ develop finite element models for long term behavior of unbound granular layers subjected 

to cyclic loading

✓ develop supervised machine learning algorithms for damage identification in pavements

INTENT Project
Objectives



INTENT Project https://intent.ulusofona.pt/

FreeHyTE Project Open Source hybrid-Trefftz modules

https://sites.google.com/site/ionutdmoldovan/freehyte

https://intent.ulusofona.pt/
https://sites.google.com/site/ionutdmoldovan/freehyte


Thank you for your attention!
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