

Hybrid-Trefftz Finite Elements for Non-Homogeneous Wave Propagation Problems

Sandra Silva Pinto

Researcher, Lusófona University, Lisbon

Dragos Ionut Moldovan Elena Daniela Bendea

The 9th European Congress on Computational Methods in Applied Sciences and Engineering June 3, 2024

The idea

Comparison: approximation strategies of Ritz vs Trefftz

Ritz Method (1909):

- ✓ use shape functions that satisfy exactly the boundary conditions (Dirichlet and interior)
- $\checkmark\,$ combine them to *more or less* satisfy the domain equations
- $\checkmark\,$ basis of the conforming finite element

Trefftz Method (1926):

- ✓ use shape functions that satisfy exactly the **domain equations**
- ✓ combine them to *more or less* satisfy the boundary conditions
- ✓ basis of the boundary/meshless/Trefftz methods

Comparison: the approximation functions, the mesh and the user's perspective

Shape functions

- simple & general, can be used for any physical problem
- bear no physical meaning
- determined by the **nodes** of the mesh
- problem-dependent
- only suitable for the problem they are computing
- bear physical meaning
- independent of the nodes

Trefftz FEM

Ritz FEM

Comparison: the approximation functions, the mesh and the user's perspective

	Shape functions	Mesh
Ritz FEM	 simple & general, can be used for any physical problem bear no physical meaning determined by the nodes of the mesh 	 needs to be conforming refined meshes sensitive to distortion sensitive to high frequencies
Trefftz FEM	 problem-dependent only suitable to the problem they are computing bear physical meaning independent of the nodes 	 could be missing altogether coarse meshes insensitive to distortion insensitive to high frequencies

Comparison: the approximation functions, the mesh and the user's perspective

	Shape functions	Mesh	User's perspective
Ritz FEM	 simple & general, can be used for any physical problem bear no physical meaning determined by the nodes of the mesh 	 needs to be conforming refined meshes sensitive to distortion sensitive to high frequencies 	 displacement solutions are typically better than stress solutions commercially available easy to use
Trefftz FEM	 problem-dependent only adequate to the problem they are computing bear physical meaning independent of the nodes 	 could be missing altogether coarse meshes insensitive to distortion insensitive to high frequencies 	 displacement and stress solutions are balanced commercially unavailable harder to use

The formulation

Description of the problem

Transient wave propagation problem

Find the displacement field u(x) and the stress field $\sigma(x)$ that satisfy the PDE.

Governing equations in the time domainDomainNavier $\mathbf{D} \ \mathbf{k} \ \mathbf{D} \ast \ \mathbf{u} \ (x, y, t) = \mathbf{\rho} \ \ddot{\mathbf{u}} \ (x, y, t)$ BoundariesDirichlet $\mathbf{u} \ (x, y, t) = \mathbf{u}_{\Gamma} \ (x, y, t)$ Neumann $\mathbf{n} \cdot \mathbf{\sigma} \ (x, y, t) = \mathbf{t}_{\Gamma} \ (x, y, t)$

	$\mathbf{u}(\mathbf{x},\mathbf{y},0) = \mathbf{u}_{0}(\mathbf{x},\mathbf{y})$
Initial Conditions	$\dot{u}(x,y,0) = v_0(x,y)$
	$\ddot{u}(x,y,0) = a_0(x,y)$

Description of the problem

Transient wave propagation problem

Discretization in time with the Newmark Method

The Newmark Method (second-order transient problems)

- Time stepping method
- Based on Taylor series

 $\omega^2 = \frac{1}{\beta \cdot \Delta t^2}$

f (t) 4	$\boldsymbol{u}_{\Delta t}$	
	u ₀	
	<u>↓</u> ↓	t

	u ₀
Known values	V ₀
	a ₀

Unknown	$u_{\Delta t}$
	$v_{\Delta t}$
Valueo	$a_{\Delta t}$

Series of pseudo spectral problems

Non-homogeneous equations

Discretization in space - displacement field approximation

Navier equation for the spectral problem at the end of the time step $t_{\Gamma}(x, y)$ $\omega^2 = \frac{1}{\beta \cdot \Delta t^2}$ $\mathbf{D} \mathbf{k} \mathbf{D} * \mathbf{u} + \omega^2 \boldsymbol{\rho} \mathbf{u} = \omega^2 \boldsymbol{\rho} \overline{\mathbf{u}}_0$ $\Gamma_{\!\sigma}^e$ General solution –approximation of the displacements v^{e} $\mathbf{u} = \Psi_{\mathrm{c}} \mathbf{X}_{\mathrm{c}} + \Psi_{\mathrm{p}} \mathbf{X}_{\mathrm{p}}$ Γ_{u}^{e} v^{e} Complementary Particular solution basis solution basis $u_{\Gamma}(x, y)$ Must satisfy the homogeneous equation Must satisfy the non-homogeneous equation **D** k **D** * $\Psi_{c} + \omega^{2} \rho \Psi_{c} = 0$ $\mathbf{D} \mathbf{k} \mathbf{D} * \mathbf{\Psi}_{p} + \omega^{2} \mathbf{\rho} \mathbf{\Psi}_{p} = \omega^{2} \mathbf{\rho} \overline{\mathbf{u}}_{0}$ **Dual Reciprocity Method** Trefftz basis

Approximation of the particular solution - Conventional Dual Reciprocity Method

Approximation bases

Radial basis functions:

 $F_p^n(r) = r^{2n} \cdot \log(r)$

Approximation of the particular solution - Conventional Dual Reciprocity Method

Approximation bases

Radial basis functions:

$$\begin{split} F_p^n(r) &= r^{2n} \cdot \log(r) \\ U_p^n(r) &= -\frac{\left[(2n)!! \right]^2}{\omega^{2n+2}} K_0(\omega r) + \sum_{k=1}^{n+1} c_k r^{2k-2} \log(r) + \sum_{k=1}^{n+1} d_k r^{2k-2} \\ c_k &= -\frac{\left[(2n)!! \right]^2}{\left[(2k-2)!! \right]^2} \omega^{2k-2n-4}; \qquad d_k = c_k \sum_{j=k}^n \left(\frac{1}{j} \right) \end{split}$$

Any other way?

Approximation of the particular solution New Dual Reciprocity Method

Implementation of the New Dual Reciprocity Method

1	Choice of one or more λ pseudo-frequencies	$\lambda = \{1, 2, 3\}$
2	Construction of the particular solution basis Ψ_p (Trefftz with λ)	$\Psi_{\mathbf{p}} = \left(\begin{array}{c} \beta_{p}^{-1}(J_{n-1} - J_{n+1}) & i\beta_{s}^{-1}(J_{n-1} + J_{n+1}) \\ i\beta_{p}^{-1}(J_{n-1} + J_{n+1}) & \forall\beta_{s}^{-1}(J_{n+1} - J_{n-1}) \end{array}\right)$
3	Obtaining the source term basis Ψ_0	$\Psi_0 = \frac{\omega^2 - \lambda^2}{\omega^2} \Psi_p$
4	Collocation of $\overline{\mathbf{u}}_{0}$ in Gauss points	Gauss collocation points where $\overline{\mathbf{u}}_{0}$ is known $\overline{\mathbf{u}}_{0} = \mathbf{u}_{0} + \Delta t \cdot \mathbf{v}_{0} + (1/2 - \beta) \cdot \Delta t^{2} \cdot \mathbf{a}_{0}$
5	Solving the system to obtain the X_p weights	$\mathbf{X}_{\mathbf{p}} = \overline{\mathbf{u}}_0 \cdot \mathbf{\Psi}_0^{-1}$
6	Obtaining the particular solution u_p	$\mathbf{u_p} = \mathbf{\Psi_p} \ \mathbf{X_p}$

New Dual Reciprocity Method

	New Dual Reciprocity Method approach
Advantages	 Simple expressions for the particular solution approximation Regular approximation functions, no points of singularity Flexible definition – choices of λ are free Simple implementation because the shape functions for the complementary and for the particular solution are similar All coefficients are defined by boundary integrals
Drawback	The collocation system may be ill-conditioned

Moldovan ID, Radu L - Trefftz-based Dual Reciprocity Method for hyperbolic boundary value problems, International Journal for Numerical Methods in Engineering, 106(13), 1043-1070, 2016

The implementation

What is FreeHyTE?

What is FreeHyTE?

- Free, open-source, computational platform
- Public & user-friendly codes using HyTE
- Implemented in Matlab

What is FreeHyTE for?

What is FreeHyTE for?

• Solving elliptic, parabolic and hyperbolic problems

Which modules are available at the moment?

Which modules are available at the moment?

- Plane elasticity •
- Porous media dynamics
- Transient problems
- Transient acoustics
- General Poisson, Laplace, and Helmholtz problems

Elastostatic plane stress and strain structural problems

Why using FreeHyTE?

Why using FreeHyTE?

- Because HyTE just work well!
- Researchers don't have to start from scratch
- Public & user-friendly codes using HyTE are rare (at best)
- Modular structure
- New modules are constantly added
- New versions of the existing modules are constantly released
- Easy to use

Application

Example

Problem

Example

Discretization in time

Newmark method

• Total time: 1.4 s

• Time step: 0.015625 s

Example

Discretization in space

- Complementary solution:
 - 144 hybrid-Trefftz finite elements
 - Domain order: 17
 - Edges order: 8
- Particular solution:
 - Order: 17
 - Built on three pseudo-frequencies, $\lambda = \{1, 2, 3\}$

 $\lambda_1 = 0.1$; $\lambda_2 = 0.2$; $\lambda_3 = 0.3$

Example

Results

- Boundary conditions are well observed
- No visible field discontinuities

Example

Results

- Boundary conditions are well observed
- No visible field discontinuities

Example

Results

Time history graphs

INTENT Project

Objectives

Intelligent health monitoring of road infrastructures using bender elements embedded in pavements (INTENT)

Objectives:

- ✓ develop finite element models for long term behavior of unbound granular layers subjected to cyclic loading
- ✓ develop supervised machine learning algorithms for damage identification in pavements

INTENT Project

https://intent.ulusofona.pt/

 FreeHyTE Project
 Open Source hybrid-Trefftz modules

 https://sites.google.com/site/ionutdmoldovan/freehyte

Thank you for your attention!